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Abstract—This project aims to build a model that will generate
novel artwork influenced by the style of well-known paintings.
To that end, in the style of New York Metropolitan Museum’s
publicly available MetFaces dataset which features a select set of
curated face images. Employing state-of-the-art diffusion models
within a modified U-Net architecture, this research focuses on
synthesizing high-quality facial images by gradually transform-
ing a random noise distribution into structured artwork. The
approach involves a comprehensive evaluation of different noise
schedules—linear and cosine—and varying numbers of iterations
to refine the model’s output. Results from the experiments indi-
cate that the cosine noise schedule, especially at higher iteration
counts, significantly enhances the quality of the generated images,
as evidenced by lower Fréchet Inception Distance (FID) scores.
This study not only underscores the capabilities of diffusion
models in artistic image generation but also opens avenues for
future research in creative Al applications, offering a promising
method for both preserving and reinterpreting cultural heritage
through technology.

I. INTRODUCTION
A. Overview of the Project

The interplay between art and technology has long captured
the imagination, leading to innovations that redefine how we
perceive and create art. This project stands at the confluence of
these realms, aiming to generate original and novel images of
faces in styles inspired by artworks curated at the Metropolitan
Museum of Art. By leveraging cutting-edge deep learning
techniques, specifically diffusion models, this initiative seeks
not only to synthesize art but also to deepen our understanding
of generative model capabilities.

B. Motivation

Artistic content generation using deep learning models is
a burgeoning field that promises to democratize art creation,
enhance creative processes, and provide insights into the cog-
nitive aspects of art perception. By automating the synthesis
of art in styles reflective of human creativity, such models
can assist artists in exploring new creative avenues and help
preserve artistic heritage in digital forms. Additionally, this
project contributes to the academic and practical discourse on
the potentials and ethics of Al in creative industries.

C. Approach

Our approach utilizes state-of-the-art diffusion models, a
class of generative models that have shown significant promise
over traditional Generative Adversarial Networks (GANSs) in
generating high-quality images. Diffusion models operate by
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gradually transforming a random noise distribution into a
structured image, mimicking the process of developing a
photograph. The choice of diffusion models is based on their
recent successes in producing images that closely resem-
ble natural photographs, their flexibility in handling diverse
datasets, and their robustness against mode collapse—a com-
mon issue in traditional GANs. In pursuit of our objectives,
we will engage in a detailed examination of the open-source
codebases available for diffusion models, ensuring a thorough
understanding of their mechanisms and optimizing them for
our specific task of generating art-inspired images.

D. Dataset for Experiments and Evaluation

The practical aspect of our research will utilize the “"Met-
Faces” dataset, consisting of 1336 PNG images. This dataset is
curated by NVIDIA Corporation and made available under the
Creative Commons BY-NC 2.0 license. These images, which
capture a variety of facial expressions and features drawn
from the Metropolitan Museum of Art’s extensive collection,
provide a rich basis for training our models. This selection not
only aligns with our goal of generating art-inspired faces but
also ensures compliance with licensing and ethical standards
for data usage.

II. BACKGROUND
A. Evolution of Image Generation with Deep Learning

The quest for automated image generation has been a sig-
nificant area of focus within the field of artificial intelligence,
particularly within the domain of deep learning. The initial
strides were made with the advent of Generative Adversarial
Networks (GANs), introduced by Goodfellow et al. in 2014.
GANs set a new standard for image quality and diversity
by effectively learning to mimic various data distributions.
The foundational concept of GANs involves two neural net-
works—generative and discriminative models—engaged in
a zero-sum game to respectively generate new images and
evaluate their authenticity.

Over time, various enhancements and iterations such as
Deep Convolutional GANs (DCGANs), Wasserstein GANs
(WGANS), and StyleGAN have emerged. Each of these vari-
ants brought improvements in stability, image quality, and the
ability to handle higher resolutions. DCGANSs, for example,
introduced convolutional layers into GAN architectures, sig-
nificantly boosting their performance on image tasks. WGANSs
modified the loss function used in training GANS to improve



model training and address the issue of mode collapse. Style-
GAN, later on, provided a means to control specific features in
generated images, allowing for unprecedented customization
of generated outputs. [1]-[4].

B. Shift to Diffusion Models

Despite these advancements, a transformative shift occurred
with the development of likelihood-based diffusion models.
These models represent a different approach where images
are generated through a process of adding and then iteratively
removing noise. Research indicates that diffusion models tend
to achieve better fidelity and diversity in generated samples
compared to state-of-the-art GANs. [5], [6] They operate on
the principle of starting with a distribution of noise and grad-
ually converting it into a structured image across numerous
steps, akin to developing a photograph.

Diffusion models have shown remarkable success in var-
ious domains, including image synthesis and text-to-image
generation, demonstrating their versatility and robustness. The
capability of these models to produce highly detailed and
realistic images stems from their unique training dynamics,
which learn an optimal path for reversing the noise addition
process.

C. Physics-Inspired Generative Models

Adding another layer to the generative landscape are
physics-inspired models like Poisson Flow Generative Models
(PFGMs) and PFGM++. [7] These models integrate concepts
from physical processes to guide the generation of new data
points in the model’s latent space. By emulating the flow of
a physical system, such as the diffusion of heat or the distri-
bution of particles, these models can introduce an additional
level of naturalism and coherence to the generation process.

D. The Role of Open Source and Community Collaboration

A pivotal aspect of advancing diffusion model technology
has been the role of open-source contributions. By examining
and utilizing publicly available code, researchers can build
upon pre-existing work, accelerating innovation and ensuring
a broad testing ground for new theories and techniques. Open-
source projects also foster a collaborative environment where
ideas can be quickly disseminated and iteratively improved
upon, which is crucial for tackling complex problems such as
high-fidelity image generation.

III. APPROACH

In this project, we employ a diffusion-based generative
model tailored to create art-styled facial images, using a U-Net
architecture optimized for our specific application. This section
discusses the diffusion process, the architectural specifics of
our model, and the dataset preparation integral to training our
model.
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Fig. 1: U-Net architecture for encoding-decoding operations
including a bottleneck multi-layer perceptron network; noisy
input passed as input to be denoised is the learning objective

Fig. 2: Addition of gaussian noise to the training set

A. Network Architecture

Our model is built upon a modified U-Net architecture,
which is fundamentally composed of a series of downsampling
and upsampling blocks connected by skip connections. This
architecture is well-suited for tasks that involve image genera-
tion from noisy data, as it effectively captures and synthesizes
details at multiple scales.

B. Encoder-Decoder Structure with Skip Connections

The encoder part of the network progressively reduces the
spatial dimensions of the input image while increasing the
depth of feature maps. This downsampling process captures
the essential features at different resolutions. The decoder part
then progressively reconstructs the image from the condensed
feature representation using upsampling layers. Skip connec-
tions between corresponding downsampling and upsampling
layers help in recovering fine details by directly propagating
features from the encoder to the decoder.

C. Positional Embeddings

To incorporate the sequential nature of the diffusion process,
positional embeddings are integrated into the architecture.
These embeddings provide the model with temporal context
necessary to guide the generation process through various
stages of noise reduction.

D. Diffusion Process

The core idea behind diffusion models is to start with
a distribution of noise and gradually refine this distribution
through a series of learnable reverse steps until it converges
to the distribution of the target data.

E. Forward Process

The forward process involves adding noise to the original
images in a controlled manner over several steps. At each
step, the image becomes noisier, but crucially, the process is
designed so that the noise can be reversed.



Fig. 3: Separating the forward diffused noise is the objective
of learning

F. Reverse Process

The reverse process is where our model learns to generate
images. Starting from pure noise, the model applies a series
of transformations that gradually denoise the input to form
an image. Each step of this process is guided by learned
parameters that effectively invert the forward noise addition.

G. Training Strategy

The model is trained by first executing the forward process
to generate noisy images at various stages. These noisy images
are then used as input to the reverse process. The goal during
training is to minimize the difference between the original
images and the reconstructed images from the reverse process,
allowing the model to learn how to effectively denoise inputs.

H. Loss Function

The primary metric for training efficacy is the difference in
pixel values between the original clean images and the images
output by the reverse process. We utilize an L1 loss, which
promotes less blurring, a desirable attribute for maintaining
the artistic integrity of generated images.

1. Dataset and Preprocessing

For training and validation, we use the MetFaces dataset
, which consists of 1,336 images derived from artworks
in the Metropolitan Museum of Art. [?] These images are
preprocessed to a uniform size to suit the input requirements
of our network and normalized to facilitate faster and more
stable convergence.

To enhance the robustness of our model and to prevent
overfitting, we apply data augmentation techniques such as
random cropping, flipping, and rotation. This ensures that the
model is not just memorizing specific artworks but learning to
generalize from the artistic styles embodied in the dataset.

RESULTS

The primary metric for assessing the quality of the generated
images in this project is the Fréchet Inception Distance (FID)
score. The FID score is a widely recognized measure in the
domain of generative models, providing a quantitative estimate
of the similarity between the distributions of generated images
and real images. Lower FID scores indicate that the generated
images are more similar to the real images, suggesting better
model performance.

We conducted experiments to evaluate the effectiveness of
our diffusion model under different training configurations,
particularly focusing on the number of training iterations and
the type of noise schedule used during the diffusion process.

Iterations | Noise Schedule FID
1000 Linear 222.26
500 Linear 325.45
1000 Cosine 189.77
500 Cosine 190.02

Table 1: FID scores for different iterations and noise schedules
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Fig. 4: Images synthesized by the Diffusion model

The experiments were structured to compare the impact of us-
ing linear and cosine noise schedules across different iteration
counts.

The FID scores obtained from the experiments clearly
demonstrate the influence of both the number of iterations and
the type of noise schedule on the quality of images generated
by the diffusion model. Increasing the number of iterations
from 500 to 1000 consistently leads to lower FID scores,
indicating better synthesis of images. This improvement is
evident in both noise schedules, but it is particularly significant
in the linear noise schedule, where the FID score decreases
from 325.45 to 222.26. This suggests that more iterations allow
the model to refine its denoising process more effectively,
which is critical in achieving higher fidelity in the generated
images.

The cosine noise schedule outperforms the linear noise
schedule across both iteration counts, with notably lower FID
scores in each case. For example, at 1000 iterations, the cosine
schedule achieves an FID of 189.77 compared to 222.26 for the
linear schedule. This indicates that the cosine method, which
adjusts noise levels in a non-linear fashion, is more adept at
modeling the complexities involved in generating high-quality
images. The cosine schedule’s superior performance is also
evident at the lower iteration count of 500, where it almost
matches the performance of the higher iteration count with



an FID score of 190.02. This near equivalence suggests that
the cosine schedule is not only more effective but also more
efficient, achieving similar quality outputs in fewer iterations.

This efficiency is particularly significant as it implies that
the model can deliver high-quality results with reduced com-
putational demands. This efficiency makes the cosine noise
schedule a preferable choice in scenarios where computational
resources are a constraint. Moreover, these findings highlight
that optimizing the noise schedule could yield more substantial
improvements in model performance than simply increasing
the number of iterations. This insight opens up new avenues
for research, particularly in exploring other noise modulation
strategies that could further enhance the quality of generated
images while maintaining or even reducing the computational
load.

DISCUSSION

This project highlights the efficacy of diffusion models in
generating high-quality, art-inspired images, showcasing sig-
nificant advancements in the interplay between deep learning
and artistic creation. The results emphasize the importance of
the noise schedule and iteration count in optimizing model
performance.

The superior performance of the cosine noise schedule, par-
ticularly at lower iteration counts, suggests that this approach
can efficiently manage noise to produce high-quality images.
This finding underlines the potential for diffusion models to
not only create art but also to serve as tools for preserving
and reinterpreting cultural heritage.

For future research, exploring various adaptive noise
scheduling techniques could optimize performance further.
Additionally, integrating feedback mechanisms that refine
noise adjustments dynamically during training may enhance
both the quality and efficiency of the generative process. This
approach could expand the model’s utility in artistic and other
creative domains, pushing the boundaries of what generative
models can achieve.

CONCLUSION

This project successfully leveraged diffusion-based gen-
erative models, specifically optimized through a U-Net ar-
chitecture, to create high-quality, art-inspired facial images.
By synthesizing images that mimic the styles curated at the
Metropolitan Museum of Art, this study demonstrates the
potential of deep learning technologies in bridging the gap
between art and artificial intelligence. The efficacy of diffusion
models, particularly under the influence of different noise
schedules and iteration counts, highlights their robustness and
versatility in generating complex image distributions. The
results clearly show that the cosine noise schedule, com-
bined with sufficient training iterations, optimally enhances
the quality of generated images. This research not only pushes
the boundaries of generative Al in artistic domains but also
suggests a promising avenue for preserving and reinterpreting
cultural heritage through technology. The takeaway message
is clear: advanced diffusion models hold significant promise

for the future of art creation and preservation, marrying the
richness of artistic expression with the precision of machine
learning.

ACKNOWLEDGMENT

This authors would like to thank Lilian Weng of OpenAl
[9] for her blog explaining the math behind diffusion models
and Hugging Face’s annotated diffusion models repository [10]
which were helpful in building equations for the code imple-
mentations. The authors would also want to thank NVIDIA
for curating the dataset used in this project.

REFERENCES

[1] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances
in Neural Information Processing Systems, 27.

[2] Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representa-
tion learning with deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434.

[3] Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein
generative adversarial networks. In International conference on Machine
Learning (pp. 214-223). PMLR.

[4] Karras, T., Laine, S., & Aila, T. (2019). A style-based generator
architecture for generative adversarial networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(pp.4401-4410).

[5]1 Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic
models. Advances in Neural Information Processing Systems, 33, 6840-
6851.

[6] Dhariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on
image synthesis. Advances in Neural Information Processing Systems,
34, 8780-8794.

[71 Xu, Y., Liu, Z., Tegmark, M., & Jaakkola, T. (2022). Poisson flow
generative models. Advances in Neural Information Processing Systems,
35, 16782-16795.

[8] https://github.com/NVlabs/metfaces-dataset

[9] https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

[10] https://huggingtace.co/blog/annotated-diffusion

All authors contributed equally.



