Linear Discriminant Analysis - A Comprehensive Guide

Intuition

The idea behind Linear Discriminant Analysis (LDA) is to dimensionally reduce the input feature matrix
while preserving as much class-discriminatory information as possible. LDA tries to express the dependent
variable as a linear combination of other features. Unlike ANOVA (Analysis of Variance) which analyzes
differences among group means, LDA uses continuous independent features and a categorical output
variable.

LDA attempts to distance the k classes as much as possible through a linear combination of its features by
maximizing the between-class scatter while minimizing within-class scatter. LDA makes an assumption that
for each of the k classes, the class conditional densities p(z | Y = k) = fi.(z) are multivariate Gaussian
distributions.

Why does LDA make Gaussian assumptions?

One, it makes it mathematically easy to derive a closed-form solution for LDA. Two, through Maximum
Likelihood Estimation (MLE), LDA's parameters can be estimated under Gaussian assumptions.

LDA assumes all classes have the same covariance matrix.

Simplification - Assuming equal covariance matrices for all £ classes simplifies the LDA model. The
assumption leads to linear decision boundaries between the classes aligning with LDA's linear
combinations of features objective.

How is LDA different from PCA?

Principal Component Analysis (PCA) is different in its motives - it tries to maximize variance in the
transformed features by finding directions/principal components that captures the highest overall variance.
LDA works on maximizing class separability - it is class conscious and is a supervised method, whereas
PCA is unsupervised. PCA is majorly used for dimensionality reduction whereas LDA is effective for
classification tasks.

What does LDA do?

LDA tries to maximize the 'Between class distance' and minimize the 'intra class distance' for each class.
Doing so will transform the original input space to a transformed lower dimensional space.
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where

fr(x) is the probability density function for class &
z is the input vector

p is the number of features



uy, is the mean vector for class k

Y1 is the covariance matrix for class &
|X%| is the determinant of X,

¥, ! is the inverse of £,

31 = X = X is an assumption. Analyzing the decision boundary between the two classes where the
discriminant functions are equal. The total between-class variance is calculated based on the below
equation.
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The below equation represents the discriminant's function for class k. The formula encapsulates the
essence of LDA's classification mechanism, combining priors of the equation, covariance information, and
distance of a data point from the class mean. By evaluating this function for each class and selecting the
class with the highest score, LDA makes the classification decision. This below equation is after logarithm
of fr(x) since log is montonic and preserves the order of the original equation.
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This result is linear in = and discriminates class 1 from class 2. x”¥x cancels out with the equal covariance
assumption making the discriminant linear.

Constructing the Lower Dimensional Space

After calculating between-class variance, Sp and within-class variance, Sy, the lower dimensional matrix
post transformation, W can be calculated based on Fisher's criterion (maximizing g—j;).
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Solution to the problem can be calculated from the eigenvalues A = {A1, A2, A3, ..., Ay} and eigenvectors
v = {v1, v2,vs,...,vn} Of the transformed matrix W. The eigenvectors show the directions of the

transformed space and the eigenvalues shows the scaling factor - the discriminative power of the
corresponding eigenvectors. Larger the eigenvalue, the more variance it accounts for in the direction of its
corresponding eigenvector.

Building the LDA Model



Let's build an LDA classification model for binary classification.

import numpy as np
from sklearn.preprocessing import StandardScaler

class LinearDiscriminant:
def init_ (self, X, y):
self.X = X
self.y =y
self.eigenvectors = None
self.scaler = StandardScaler()

def scale_ features(self, X):
return self.scaler.fit_transform(X)

def fit(self, X, y):
X = self.scale_features(X) # Scale features before fitting
M = X.shape[1] # Number of Features
classes = np.unique(y) # Number of Classes
mu_overall = np.mean(X, axis=0) # Overall mean
S_W = np.zeros((M, M))
S_B = np.zeros((M, M))

for k in classes:
X_k = X[y == k]
mu_k = np.mean(X_k, axis=0)

S W += np.dot((X_k - mu_k).T, (X_k - mu_k)) # Within class scatter

n_k = X_k.shape[@]
mu_delta = (mu_k - mu_overall).reshape(M, 1)

S B += n_k * np.dot(mu_delta, mu_delta.T) # Between class scatter

A = np.linalg.pinv(S_W).dot(S_B)

eigenvalues, eigenvectors = np.linalg.eig(A)

self.eigenvectors = eigenvectors[:, np.argsort(eigenvalues)[::-1]]
eigenvectors by eigenvalues (descending order)

self.eigenvalues = eigenvalues[np.argsort(eigenvalues)[::-1]]

def transform(self, X, dimensions):
X = self.scale features(X)
if dimensions is not None and dimensions < X.shape[1]:
X_transformed = np.dot(X, self.eigenvectors[:, :dimensions])
else:
X_transformed = np.dot(X, self.eigenvectors)

# Sort

explained_variance = np.var(X_transformed, axis=0) / np.var(X, axis=0).sum()

return X_transformed, explained_variance



## Formulating LDA as a Neural Network

The LDA classification model can be reformulated as a neural network with a single hidden
layer. The input layer corresponds to the input data feature space and the output is a Softmax
layer. The hidden layer is a single dense layer with a linear activation function. This layer
performs the linear transformation defined by LDA. Weights of this layer correspond to the LDA
directions (eigenvectors of the transformed matrix). Output Softmax layer converts the linear
projection into class probabilities.

Training objective: Minimize cross-entropy loss, which is the same as maximizing class
separability. Unlike LDA which computes a closed-form solution, the neural network can be
trained using gradient-based optimizers.

" python
class LDANeuralNet(nn.Module):
def init (self):
super(LDANeuralNet, self). init_ ()
self.lda_layer = nn.Linear(2, 1)
self.softmax = nn.Softmax(dim = 1)

def forward(self, x):

x = self.lda_layer(x)
x = self.softmax(torch.cat([-x, x], dim=1)) # Two-class softmax
return x

model = LDANeuralNet()
criterion = nn.CrossEntropylLoss()
optimizer = optim.Adam(model.parameters(), 1lr=0.01)

# Train the model
num_epochs = 500
for epoch in range(num_epochs):
# Forward pass
outputs = model(X_train_tensor)
loss = criterion(outputs, y_train_tensor)

# Backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()

if (epoch + 1) % 10 == 0:
with torch.no_grad():
test _outputs = model(X_ test_tensor)
test_loss = criterion(test_outputs, y_test_tensor)
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}, Test Loss:
{test_loss.item():.4f}")



Feature 2

LDA as a Neural Network on a 2D Dataset
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Feature 1

MLP Structure with Weights and Output Values
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